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Abstract 

We show that the method of Wu [J. Geom. Phys. 12 (1993) 2051 to study topological 4D-gravity 
can be understood within a standard method now designed to produce equivariant cohomology 
classes. Next, this general framework is applied to produce some observables of the topological 
4Dgravity. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Since their appearance in 1988 in a famous article of Witten [ 131, topological field theories 
have played an important role in theoretical physics as well as in mathematics. Actually, the 
1988 article gave a prototype of topological field theories of cohomological type. Witten has 
recognized that these cohomological field theories are related to equivariant cohomology 
and more precisely to the so-called Cartan model of equivariant cohomology. 

Although cohomological field theories can be described independently of the models used 
for equivariant cohomology, the construction by Kalkman [9] of the so-called intermediate 
model [ 121 is of considerable technical help. In [ 121, topological Yang-Mills [ 1,3,13] and 
topological 2D gravity [4,5] were studied from this point of view. In [2], new representatives 
of the Thorn class of a vector bundle were produced using this general framework. 

Wu [ 141 explained the role of the universal bundle in 4D gravity, * and exhibited some 
observables of the corresponding topological model. We shall explain here how his method 
can be deduced from the general approach of [ 121 and which observables are obtained. 

1 URA 14-36 du CNRS, associke B 1’Ekole Normale Supkieure de Lyon et 2 l’Universit6 de Savoie. 
* 4D topological gravity was first proposed by Witten [13]. 

0393~0440/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved 
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2. From the intermediate to the Weil model of equivariant cohomology 

In [ 121 it was explained how one can generate representatives of equivariant cohomology 
classes using an idea of [6] which benefits from Kalkman’s construction [9] as follows: let 
us assume that M is a smooth manifold with a smooth G-action for some connected Lie 
group G (with Lie algebra Lie 6). Let d ,+I, i&f, 1~ be the standard exterior derivative, inner 
product and Lie derivative on M. The action of 6 induces an action of Lie 6, and to any 
h E Lie 6, there corresponds a so-called fundamental vector field hM on M. The space 
of forms on M is denoted by Q(M), and its basic elements are those annihilated both by 
iM(h) and [M(h), for any h E Lie G. We recall that Zm = [dM, iM]+. 

The Weil algebra (W(G), dw , iw , ZW) of G is the graded differential algebra generated 
by the “connection w” and its “curvature 0” 

dww = f2 - ;[co, w], 

dwi2 = -[w, S’2], 

iw(h)w = h, 

iw(h)Q = 0, 

lw@)o = -[A, WI, 
Iw@W = -0, m 

for any h E Lie G. 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

Then the equivariant cohomology for the action of 6 on M is the basic cohomology of the 
graded differential algebra (W(G) @ Q(M), dw + dM, iw + iM, ZW + ZM). It generates 
the so-called Weil model of equivariant cohomology. 

Now let us consider another Lie group H such that M is the base space of some principal 
H-bundle P(M, H) on which the action of 6 can be lifted. This bundle is also equipped with 
standard differential operations: dp, ip, Zp. Then some equivariant cohomology classes 
can be represented as follows: consider a &invariant H-connection r on P. Extend r to 
W(G) @ Q(M), still denoting it r. Since r does not depend on w, it fulfills 

iw(h)r = 0, (7) 

(lw + lF)(A)r = 0, (8) 

for any h E Lie 6. This expresses the basicity of r in the so-called intermediate model of 
equivariant cohomology. In this model, the exterior derivative reads 

Dint = dw + dp + UP - ip(Q) (9) 

so that 

Dintr = dpr - .+(f2)r 

and the equivariant curvature of r in the intermediate model reads 

R,z(r, W, Q) = Di,tr + $[r, rl. 

(10) 

(11) 
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ktR;t = [Rr$, rlt (12) 
ipjJ(h)R;; = 0, (13) 

(Ew + l+R;; = 0. (14) 

The H-fibration is eliminated by considering symmetric H-invariant polynomials I:: = 

Z(R;;). 
To go to the more usual Weil model, we use the Kalkman differential algebra isomorphism 

exp(ip(w)), thus obtaining 

(dw + dp)ZZ = 0, (15) 

(iw + ip)(A)z; = 0, (16) 

(lw + zp)(a)Z~ = 0, (17) 

where Z? = exp(ip (w))ZLy . Now since the H-fibration has disappeared, 1; lies in W(G) 8 
52(M). Under the assumption that M is a principal G-bundle over M/Q, we can replace 
w and Q by a G-connection 8 and its curvature 0 on M. Cartan’s Theorem 3 guarantees 
that our new representative gives a representative of the same equivariant cohomology class 
[7,12]. Still denoting this representative by Zz, we verify that 

dmZz = 0, (18) 

iM(h)z; = 0, (19) 

z&)1; = 0. (20) 

Now, we are ready to use this method in topological 4D-gravity. 

3. Wu’s construction [14] in topological 4D-gravity 

Let E be a 4D smooth manifold. The fundamental objects in Ge are the metrics of 
.E and the generators of the Weil algebra of Diffo(E), the connected component of the 
diffeomorphism group of E . The structure equations then read 

s’OPg = &V + L@P (w)g, 

stop* = -PP(fi)g + L’“P(w)P, 

Stop@ = R - +, w], 

stops2 = -[w, a]. 

(21) 

(22) 

(23) 

(24) 

Let us note that the form of these structure equations is universal (i.e. independent of the 
model we choose). Now, let us apply the precepts of the previous section. The group of dif- 
feomorphisms of .E plays the role of the gauge group 6 over Met(E). The H-fibration 
is obtained by considering the frame bundle over E, F(E), 3 and our final principal 

3 Note that F(Z) is the principal bundle associated to the tangent vector bundle TC of E. 
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GL(4,1W)-bundle P is just Met(Z) x F(Z). The Diff(Z)-invariant GL(4, IF!)-connection 
r on Met(C) x F(X) is given by 

rlLk = rLC(gQ + ;gh”Gg”,, (25) 

where f Lc (g) is the Levi-Civita connection of g E Met(Z), and 6 is the exterior derivative 
on Met(X) [4,8]. 

This GL(4, IW)-connection is used in the intermediate model. Before going any further, 
let us notice that in the Weil model, this connection reads 

which is comparable with (2.5) in [ 141. Now, the intermediate curvature 

Rlenq(r, W, Q) = Di,rr - $[r, r] (27) 

gives the corresponding Weil curvature 

(28) 

which is of the form (2.6) of Wu [ 141. 
Now, let us construct some observables. 

4. Some observables for topological 4D-gravity 

In order to generate observables of the theory, we first eliminate the GL(4, IW)-fibration. 
As explained in Section 2 this is achieved by considering symmetric GL(4, IW)-invariant 
polynomials. The Euler class and the Pontrjagin classes generated by Rz are such poly- 
nomials [lo]. Actually, only the first Pontrjagin class is relevant. 4 Up to normalization 
factors, those two cohomology classes are given by 

(29) 

and decompose into five terms 

@=Q~+L~:+Q;+Q:+& (31) 

P:=G;+G;+G;+G;+G,O, (32) 

4 The zeroth class is trivially 1 while the second (and the highest) class is the square of the Euler class. 
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where the upper index refers to the form degree on Met(E) while the lower one refers to the 
form degree on Z. These expressions are to be compared with (2.9) of [ 141. 5 Observables 
extracted from monomials (Ez)m (P?)” . 

(p&“(p$ = Qm+n) + “p(m+n)-l _ v$(m+n)-2 

+qm++3 + V44(m+n)-4, 
(33) 

with 

4(m+n) 
“0 = (Q;>‘YG;Y, (34) 

4(m+n)-1 
“I = ~z(Q$‘YG;)~-‘G; + m(Q;)“-l Q;(G$)“, (35) 

4(m+n)-2 
“2 = n(Q;)m(G;)“-lG; + 

n(n - 1) 
-<Q$YG;)n-2(G:)2 2 

+mn(Q;)m-lQ;(G;>“-‘G; + m(Q;)“-‘Q;(G;t)” 

+ 
m(m - 1) 

2 
<Q”,>m-2Q;Q:<G;>“, (36) 

4(m+n)-3 
“3 = ~z(Q;)~(G;)“-‘G; + 

n(n - 1) 
,-(Q;)m(G;)“-2G;G; 

+n(n - l)@ - 2, 
6 

(Q;>m(Gf,)n-3(G:)3 

+mn(Q$“-‘Q:(Q$“-‘Gi 

+m ~(Q~)m-lQ:(G~)~-2(G~)2 

+mn(Qi)m-l Qi(G$“-‘G: 

+n 
m(m - 1) 

2 
(Q~)“-2(Q:)2(G~>“-1G: 

+m(Q$m-’ Q: (Gi)” + m(m2A ‘) ( Q$m-2 Qz Q:(G$)” 

+ 
m(m - l)(m - 2) 

6 
(Q:>“-3(Q:)3K$)“, (37) 

“,4(m+n)-4 =n(Q;)“(&)“-‘G4, 

n(n - 1) 
+p 

4 m 
2 <Q,> (G;)“-2W;>2 + G:G:) 

+ 
n(n - l)(n - 2) 

6 
<Q:>m(G:Y-3V$)2G; 

+n(n - l)(n - 2)(n - 3) 

24 
(Q;>m(G:Y-4(G3)4 1 

+mn( Q$m-’ QT (G$“-‘Gi 

5 In earlier references [ 1 l] devoted to algebraic studies of topological gravity, one can find similar formulae 
whose geometrical meaning is given here. 
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i-m ??$ (Q;)+’ Q;(,‘+-2G$G; 

+m 
n(n - l)(n - 2) 

6 
<Q:Y-’ Q:(G;>“-3(G:)3 

+mn( QiY-’ Q~(G$“-‘G~ 

i-m T(Q;)--l Q$(G;)“-2(G;)2 

+n m(m2- ‘) (Q~)“-2(Q:)2(G~)“-‘G: 

+ 

mn(m - l)(n - 1) 

4 
(Q~)“-2(Q:>2(G~)“-2(G:)2 

+mn(Q~)m-lQ~(G~)n-lG~ 

+n m(m2- l’cQ5”1-‘Q~Q:(G~)“-‘G: 

+n 
m(m - l)(m - 2) 

6 
(Q;)“‘-“Q;(G;)“-‘G; 

+m(Q~)“-‘Q~(@J” 
m(m - 1) 

+ 2 
(Q:>“-2((Q:>2 + Q:Q:W$” 

+ 
m(m - l)(m - 2) 

6 
<Q:>‘+‘(Q:,‘Q;<@ 

+ 
m(m - l)(m - 2)(m - 3) 

24 (Q$‘+4(Q:)4(G:Y. (38) 

Next, we replace w and 0 by a Diff (_?Z)-connection 8 and its curvature 0 on Met(Z). The 
corresponding forms fulfill the “descent” equations 

cSV~*-~ + dc V;:;p+l = 0, P (39) 

2(A) vpp + iz. (A) v;y- = 0, (40) 

L(qy + z&+a>v,4”-p = 0, (41) 

where Z and L are the inner product and Lie derivative on Met(Z). Finally, we integrate 
over cycles on JC to obtain forrns on Met(Z) only 

v4n-p _ - 
i 

v4n-P 
P . (42) 

YP 

Exactly as in the 2D-gravity, only 

v4n-4 = 

i 

v4n-4 
4 

c 

(43) 
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defines an equivariant form on Met(Z). This gives observables of Gr?, which are the 

analogues of the Mumford invariants appearing in Gr:‘. 
An explicit expression of the Q’s and the G’s is given in Appendix A, 

5. Conclusion 

All the work done above can be applied to higher-dimensional gravity theory. Of course 
this also applies to Yang-Mills topological theory. Nevertheless, in this last case things are 
much simpler since the gauge group does not act on the space-time manifold _E, while in 
gravity theory the diffeomorphism group does. 
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Appendix A 

It was already shown in [ 121 that the Weil curvature takes the form 

(Rz); = (P - i&$RLC + $c(o)i&O)RLC + $DLC A ; 

- $ix(w)DLc A ; - bl?l_$ + iDLc A 6);, 

where 

3, = @g,, - lZ(@)&,) d_@ = Y/J@ tip, 

4; = P”(@,, - ~c(w)g,,) = &?“(&L) = (g-‘F);, 

(DLc A 5); = gp”(DpLcf, - DpLcFp). 

Then, after a “straightforward’ algebraic juggle, one finally obtains 

Q: = 

,+VPU 

-gvao, CR”‘); A (RLc); = Ec, 
& 

Q&25 g,,hg,, (RLc)h, A 
( 

-iz(co)RLC + i DLc A p 
> 

x 
, 

P 

(A-1) 

(A.3 

(A.3) 

(A.4) 

(A.3 

(-4.6) 

- 2(ic(w)RLc)i A (DLc A 5): 

+ (DLc A ;); A (DLc A 3); 
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+ (P$ A (i&+)i&o)R=c - i&)(DLC A ;) 

- $4 - DLc A ii);], 

Q: = 

.+“PO 

-gvAg,,(ic(w)i~(w)RLC - ic(w)(DLc A ;) z/g 

A(-~&J)R=~ + ;DLc A ;),x, 

Qi= 
@"PO 
-gvAg,,(ic(w)i~(w)RLC - Cd4(DLc A 3) 
4%/E 

A(iz(o)(i&)RLC - i&o)(DLc A ;) 

64.7) 

(A.W 

b-4.9) 

Finally, the G’s are obtained by replacing (e~“~“/&)g,~g,x in the Q’s by (SrSi - 6FSf). 
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